Bioburden Control, Cleaning and Disinfection

Science & Solutions for Life

Agenda

- Bioburden in Cleanrooms
 - Operator Contamination
 - Fungal Spore Contamination
 - Bacterial Spore Contamination
- Cleaning and Disinfection
- In situ testing case study

Review - Microflora in Cleanrooms (U.K.)

- Tim Sandle
- PDA J Pharm Sci and Tech 2011, 65:392-403
- A Review of Cleanroom Microflora: Types, Trends, and Patterns

- Examined isolates from 2000-2009 in U.K.
- Grade A/B and C/D

Review - Microflora in Cleanrooms (U.K.)

Life Sciences

Grade A and Grade B microflora by group, 2001-2009

Review - Microflora in Cleanrooms (U.K.) STERIS

Genus	A/B (6729)	C/D (2500)
Micrococci (and related)	38%	40%
Staphylococci	21%	11%
Bacillus (and related)	13%	10%
Pseudomonas (and related)	<1%	8%
Corynebacterium (and related)	3%	5%
Rhodococci	<1%	N/A
Fungi	N/A	3%

Operator contamination

- Staphylococcus
- Propionibacterium acnes

Agenda

- ✓ Operator Contamination
- ✓ Fungal Spore Contamination
- Bacterial Spore Contamination

Fungal Spores

- Penicillium
- Aspergillus
- Cladosporium

Penicillium, photos: Ann Larson

Cleanroom Fungi

Courtesy Dan Klein

Common sources of Spores

- Items brought into the Cleanroom
 - Bags, Boxes, Intervention Equipment, Pallets, Pallet Jacks,
 Scrubbers, Cart Wheels, Shoes, Shoe Covers
 - Raw Materials

Penicillium

- ISO-7 Cleanrooms
- Action Levels of 10 and picking up >100
 - Engineering Investigating
 - HVAC
 - Duct Work
 - HEPA Filters
 - Cooling Coils
 - Wall Coverings
 - Airflow Vents

Penicillium Investigation

- Entry and Exit Procedures
- Gowning Procedure
- Cart Wheels
- Construction
 - Further Investigation
 - Use of Sporicides
 - Containers in the Cleanroom
 - Cold room Cleaning Procedures
 - Documentation
 - Assignable Cause

70% IPA Efficacy Against Molds

Fungicidal Activity of 70% Isopropyl Alcohol using Time Kill Method

Fungicidal Activity of H2O2/PAA RTU using Time Kill Method

Agenda

- Bioburden in Cleanrooms
 - Operator Contamination
 - Fungal Spore Contamination
 - Bacterial Spore Contamination
- Bacterial Spore Morphology and Efficacy Testing
- In situ testing example

Bacterial Spores

- Bacillus cereus group (7 species*)
- Bacillus circulans
- Paenibacillus glucanolyticus

*B. anthracis, B. cereus, B. pseudomycoides, B. mycoides, B. thuringiensis, *B. weihenstephanensis, B. manliponensis

Bacterial Endospore

Courtesy Dan Klein

Exosporium – *B. anthracis*

Cote CK et al. 2011. Microbes and Infection 13(14-15):1146-55.

Bacillus cereus

- ISO-7 and ISO-8 cleanrooms
- Process Vessels
 - Source Locations
 - Cleanroom Shoe Cover
 - Fermentor
 - Process Vessels
 - ✓ The Source was a Raw Material

Bacillus Testing

Sporicidal Application

- H2O2/PAA Sporicides
- Cart Wheels
- Items entering the cleanroom

Gaseous Decontamination

Complementary approaches which form a highly-effective solution to manage bioburden in critical environments

Gaseous Decontamination Methods

DECONTAMINATION METHOD	DELIVERY MEDIUM	PERMISSIBLE EXPOSURE LIMIT*	HUMAN CARCINOGEN	EFFICACY	CYCLE TIME (2500FT³)	MATERIAL COMPATIBILITY	REPEATABILITY (VALIDATION)
VHP	Vapor	1.0 ppm	No	Good	< 4 hrs	Good	Good
Hydrogen Peroxide (e.g., fogging, ionization, micro-condensation)	Hybrid	1.0 ppm	No	Good	4-8 hrs	Variable	Moderate
Chlorine Dioxide	Gas	0.1 ppm	No	Good	< 4 hrs	Moderate	Good
Formaldehyde	Gas	0.75 ppm	Yes	Good	> 8 hrs	Good	Good

^{*} Values represent OSHA permissible exposure limit (PEL) for 8-hour time weighted average (TWA) exposure.

^{**} Visible soils must be properly cleaned before VHP® application.

Why Use VHP?

- ✓ Efficacy (Broad spectrum sterilant)
- ✓ Consistency & Distribution
 - Reach difficult to access surfaces
 - Passes through HEPA filters
 - Kills airborne and surface microbes
- ✓ Excellent Material Compatibility
 - > Electronics
 - Metals and common polymers
- ✓ Speed
 - Minimal labor required
 - Easy to validate (24-hr Bl)
- ✓ Green Technology
 - > Low toxicity
 - No residues
 - EPA approved

Reserved. CONFIDENTIAL and PROPRIETARY to STERIS Corporation

Life Sciences

VHP Process Validation

- Biological Indicators
 - Geobacillus stearothermophilus (Strains 7953 or 12980)
 - 6-log for Biodecontamination / Sterilization
- Environmental Monitoring
- Swabbing

* G. stearothermophilus has been proven to be the most resistant organism to VH_2O_2 .

Vaporized Hydrogen Peroxide - Limitations STERIS

Limitations

- Cannot be used while areas are occupied
- Higher application cost than liquid chemistries
 - 3rd Party Service
 - Capital Equipment and training investment
- "Lazy" gas needs distribution assistance in large space

Typical Decon Applications

Anything from a biosafety cabinet to a complete facility...

Laboratory Equipment

- Microbiological Safety Cabinets Ductwork
- Transfer Chambers
- Isolators
- Incubators
- Centrifuges

Complete Facilities

- Clean-rooms
- Corridors
- Laboratories
- Containment facilities
- Changing Areas
- Prep Areas
- Analytical Work areas
- Offices
- Lockers
- Air Showers
- Wash / Toilet areas
- Filters (HEPA)
- Storage Areas
- Service Areas
- Electrical Cabinets

When to Decontaminate

- Proactive Basis
 - After shutdown or production change (e.g. Pharma)
 - Before shutdown or equipment service (e.g. BSL-3)
 - Bioburden reduction
- Elimination of Known Contamination (Event Response)
- Commissioning / Decommissioning
 - Facility
 - Equipment

VHP Process Development for Spaceship Applications

Authors: Naresh Rohatgi (NASA JPL) & STERIS Strategic Technology Enterprises

Publication: 04ICES-113

Publication Date: 2004

- NASA Planetary Protection Office's microbial reduction requirements for all Mars *in situ* life detection missions may require entire spacecraft decontamination.
- Electronics not compatible with approved dry heat methods
- STERIS designed and constructed a high vacuum (~one torr) Biological Indicator Evaluator Resistometer (BIER) vessel to generate hydrogen peroxide lethality data.
- VHP process provided an effective, rapid, safe, and low temperature means for decontaminating spores, mycobacteria, fungi, viruses, and other microorganisms
- VHP process has innocuous residuals as it decomposes to water vapor and oxygen\
- Results under Implementation Plan for Jet Propulsion Laboratory, RG-563852
 "Generation of Lethality Data on Vapor Phase Hydrogen Peroxide."

VHP Certification from NASA Interplanetary Protection

Authors: Chen, Fei; Chung, Shirley; Barengoltz, Jack

Affiliation: AA(Jet Propulsion Laboratory, California Institute of Technology), AB(JPL),

AC(Private Individual)

Publication: 38th COSPAR Scientific Assembly, July 2010, in Bremen, Germany, p.4

Publication Date: 00/2010

- Flight system must deposit minimal bioload on planets
- Dry heat sterilization (only previously approved method) not suitable for electronics
- Validated using VHP "hardy" strains that were isolated from cleanrooms and environmental populations collected from spacecraft relevant areas.
- Material compatibility discussed

Case Study: Construction Event at Biotech Site

- Worst Case Events
- ☐ 9X Clean [1X Sporicide + 2X Phenolic repeated on days 1,2,3]
- □ Fogging
- □ VHP®
- ☐ Triple Clean
 - ✓ Defined 3X Disinfectants and Sporicide
 - ✓ EM frequency (Static and Dynamic)
 - ✓ Release of the room

Triple Clean in a Cleanroom

Sample	Action Limit	Pre Triple Clean	Post Triple Clean
RODAC	2 cfu/plate	3 cfu/plate	<1 cfu/plate
RODAC	2 cfu/plate	31 cfu/plate	<1 cfu/plate
RODAC	2 cfu/plate	3 cfu/plate	<1 cfu/plate

Results from an ISO-8 Cleanroom (554ft² room)

In Situ Data-Case Study

Room	Media Type	Action Limits	Pre- Sanitization ^a	Range (#cfu/unit) ^b	Post- Sanitization ^a	Range (#cfu/unit) ^b
#1	Biotest	>2.5 cfu/ft ³	3 of 4	0.3 ^d	0 of 4	0
	RODAC	>2 cfu/plate	2 of 8	0 to 1	0 of 8	0
	Settling	>2 cfu/plate	0 of 4	0	0 of 4	0
	Swabs	>2 positive	0 of 4	N/A ^c	0 of 4	N/A ^c
#2	Biotest	>2.5 cfu/ft ³	1 of 4	0.04 ^d	0 of 4	0
	RODAC	>2 cfu/plate	2 of 9	0 to 1	0 of 9	0
	Settling	>2 cfu/plate	0 of 4	0	1 of 4	0 to 1
	Swabs	>2 positive	1 of 7	N/A ^c	0 of 7	N/A ^c

Cleaning and Disinfection Efficacy

Time 0

Red = Spore formers

Green = Other

After 1X Cleaning - NO Sporicide

After 2X Cleaning – NO Sporicide

After 3X Cleaning - No Sporicide

After Sporicide

Summary

- Bioburden in Cleanrooms
 - Operator Contamination
 - Fungal Spore Contamination
 - Bacterial Spore Contamination
- Bacterial Spore Morphology and Efficacy Testing
- In situ testing case study

Thank You for Your Attendance!

jim_polarine@steris.com larry_zanko@steris.com

